LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - APRIL 2023
PMT 3602 - DIFFERENTIAL GEOMETRY

Date: 08-05-2023
Time: 01:00 PM - 04:00 PM
Dept. No. \square

Answer ALL the questions

1. (a) Find the centre and radius of the osculating circle.
(OR)
(b) Find the length of the circular helix $\vec{r}=a \cos u \vec{\imath}+a \operatorname{sinu} \vec{\jmath}+b u \vec{k},-\infty<u<\infty$ varies from the point $(a, 0,0)$ to $(a, 0,2 \pi b)$. Also obtain the equation in terms of parameter s.
(c) Derive the equation of the osculating plane at a point on the intersection of two surfaces $f(x, y, z)=0$ and $g(x, y, z)=0$.
(OR)
(d) State and prove Serret-Frenet formulae.
2. (a) Find the inflexinol tangent at $\left(x_{1}, y_{1}, z_{1}\right)$ on the surface $y^{2} z=4 a x$.
(OR)
(b) Derive the equation of involute of a given curve.
(c) State and prove Fundamental theorem of space curves.
(OR)
(d) Show that the intrinsic equation of the curve $x=a e^{u} \cos u, y=a e^{u} \sin u, z=b e^{u}$ are $k=\frac{a \sqrt{2}}{s \sqrt{2 a^{2}+b^{2}}}$ and $\tau=\frac{b}{s \sqrt{2 a^{2}+b^{2}}}$.
3. (a) Write a brief note on transformation of parameters.
(OR)
(b) Define (i) Artificial singularity (ii) Envelope (iii) Developable surface.
(c) Explain the first fundamental form of a surface and give its geometrical interpretation.
(OR)
(d) (i) Derive the equation of polar developable associated with a surface.
(ii) Show that the pole in the plane is artificial singularity.
4. (a) State and prove Meusiner's theorem.
(OR)
(b) Define (i) umbilic point (ii) total curvature (iii) line of curvature.
(c) (i) Explain briefly the different points on a surface.
(ii) State and prove Euler's theorem.

(OR)

(d) Derive the equation satisfying principal curvature and principal direction at a point on a surface.
5. (a) Derive Weingarten equations.
(OR)
(b) If k_{1} and k_{2} are the principal curvatures and the lines of curvature are parametric curves then prove that the codazzi equations are $\frac{\partial k_{1}}{\partial v}=\frac{1}{2} \frac{E_{v}}{E}\left(k_{2}-k_{1}\right)$ and $\frac{\partial k_{2}}{\partial u}=\frac{1}{2} \frac{G_{u}}{G}\left(k_{1}-k_{2}\right)$.
(c) Derive Gauss equations of surface theory.
(OR)
(d) State the Fundamental theorem of Surface Theory and demonstrate it in the case of unit sphere.

