LOYOLA COLLEGE (AUTONOMOUS), CHEN	INAI – 600 034
M.Sc. DEGREE EXAMINATION – MATHEM	IATICS
THIRD SEMESTER – APRIL 2023 PMT 3602 – DIFFERENTIAL GEOMETRY	
Answer ALL the questions	
1. (a) Find the centre and radius of the osculating circle.	(5)
(OR)	
(b) Find the length of the circular helix $\vec{r} = a\cos u \vec{i} + a\sin u \vec{j} + bu \vec{k}$, $-\infty < u < \infty$ varies from the	
point $(a, 0, 0)$ to $(a, 0, 2\pi b)$. Also obtain the equation in terms of parameter <i>s</i> .	
	(5)
(c) Derive the equation of the osculating plane at a point on the intersection of two surfaces $f(x, y, z) = 0$	
and $g(x, y, z) = 0$.	(15)
(OR)	
(d) State and prove Serret-Frenet formulae.	(15)
2. (a) Find the inflexinol tangent at (x_1, y_1, z_1) on the surface $y^2 z = 4ax$.	(5)
(OR)	
(b) Derive the equation of involute of a given curve.	(5)
(c) State and prove Fundamental theorem of space curves.	(15)
(OR)	
(d) Show that the intrinsic equation of the curve $x = ae^u \cos u$, $y = ae^u \sin u$, $z = be^u$ are $k = \frac{a\sqrt{2}}{s\sqrt{2a^2+b^2}}$	
and $\tau = \frac{b}{s\sqrt{2a^2+b^2}}$.	(15)
3. (a) Write a brief note on transformation of parameters.	(5)
(OR)	
(b) Define (i) Artificial singularity (ii) Envelope (iii) Developable surface	e. (5)
(c) Explain the first fundamental form of a surface and give its geometric	al interpretation.
	(15)
(OR)	
(d) (i) Derive the equation of polar developable associated with a surface.	
(ii) Show that the pole in the plane is artificial singularity.	(10+5)
4 (a) State and prove Meusiner's theorem	(5)
	(5)
(b) Define (i) umbilic point (ii) total curvature (iii) line of curvature.	(5)

(c) (i) Explain briefly the different points on a surface.

(ii) State and prove Euler's theorem.

(d) Derive the equation satisfying principal curvature and principal direction at a point on a surface.

5. (a) Derive Weingarten equations.

- (OR) (b) If k_1 and k_2 are the principal curvatures and the lines of curvature are parametric curves then prove that the codazzi equations are $\frac{\partial k_1}{\partial v} = \frac{1}{2} \frac{E_v}{E} (k_2 - k_1)$ and $\frac{\partial k_2}{\partial u} = \frac{1}{2} \frac{G_u}{G} (k_1 - k_2)$.
- (c) Derive Gauss equations of surface theory.

(OR)

(d) State the Fundamental theorem of Surface Theory and demonstrate it in the case of unit sphere.

(15)

(5)

(15)

############

(OR)

(15) (5)

(5+10)